JOURNAL OF
CHROMATOGRAPHY A

ELSEVIE Journal of Chromatography A, 693 (1995) 113-130

Combined effects of non-linear electrophoresis and non-linear
chromatography on concentration profiles in capillary
electrophoresis

Michael S. Bello', Michael Yu. Zhukov®, Pier Giorgio Righetti*

Faculty of Pharmacy and Department of Biomedical Sciences and Technologies. University of Milan. Via G. Celoria 2,
20133 Milan. ltaly

First received 25 April 1994; revised manuscript received 26 July 1994; accepted 7 October 1994

Abstract

A theory of peak evolution in a column under the combined action of electromigration dispersion and
equilibrium adsorption-desorption is presented. The basic equations for mass transport in zone electrophoresis are
combined with those for non-linear chromatography. Langmuir’s isotherm is assumed for describing the analyte
interaction with the column wall (capillary electrophoresis in thin capillaries) or a sorbent (electrokinetic
chromatography). The transport equation thus obtained is analysed and three specific cases determining the peak
evolution are found: (A) the concentration velocity as a function of concentration is non-monotonous; (B) the
velocity increases with analyte concentration; and (C) the velocity decreases with increments of concentration.
Solutions to the transport equation for all three cases. describing the evolution of disperse boundary and
discontinuities are derived. By assuming a “rectangular pulse” initial profile, a variety of peak shapes are
generated. In the case of a non-monotonous velocity dependence on concentration, the initial concentration is
shown to be an important parameter determining the peak shape and its transformations while moving along the
column axis. A possibility of a counterbalance of the electromigration and adsorption mechanisms of the peak
broadening. leading to a decay of the peak evolution into a *“‘triangle’” is found.

1. Introduction laries, down to 10 um, have been used for
electrophoretic separations. The main advantage
Since the early 1980s [1]. narrow-bore capil- of these capillaries is well known: they allow for

significant decrease in the Joule heating and,

thus, for an increase in the applied voltage

—_— leading to short separation times. Peak broaden-
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migration dispersion [4], i.e., an asymmetric
peak broadening, caused by a mismatch between
the electric conductivity of the analyte and the
background electrolyte. The mass transport in
electrophoresis is determined by the electric
field. The presence of the analyte in the solution
influences the electric conductivity of the solu-
tion and, therefore, the axial electric field in the
column. This effect is expressed by a set of
non-linear transport equations governing species
concentrations in the solution.

It was understood by Virtanen [3] that interac-
tions of an analyte with the capillary surface may
affect the peak shape and electromigration time.
However, these interactions were assumed to be
negligible for large-bore capillaries. With nar-
row-bore capillaries, the analyte interactions
with the capillary wall become important [5].
They even may be considered as one of the main
obstacles to the progress of capillary electro-
phoresis (CE) and generated a great deal of
research on surface coatings [6]. Such coatings
should prevent analytes from being adsorbed on
the wall, although it is doubtful that a universal
coating that does not interact with all analytes
exists.

The most elaborate method used to account
for interactions of an analyte moving down a
column with a solid phase is that developed in
non-linear chromatography [7-9]. The transport
equation governing analyte concentration in
chromatography is derived by combination of the
mass balance equation in the moving phase and
the balance between solid and liquid phases. In
the case of equilibrium between phases, the
phase balance is described by Langmuir’s iso-
therm, which leads to a non-linear transport
equation.

This paper presents a novel theory uniting
both mechanisms of peak broadening: electro-
migration dispersion and peak broadening due to
adsorption. A brief review of electromigration
and adsorption mechanisms of peak broadening
is followed by derivation of the basic equation
for the equilibrium mass transport in thin capil-
laries. Detailed analysis of this equation predicts
various scenarios of the peak evolution.

2. Equations for zone electrophoresis and
chromatography

This section presents known concepts from the
theory of electrophoresis and non-linear chroma-
tography.

2.1. Electrophoresis
Electrophoretic mass transport is modelled in

a non-diffusion approximation by the following
set of equations [10-12]:

dc  0i,
TR 0 (1)
i, =puck (2)

=0k (3)

where ¢ is the concentration of an analyte, i, is
the electrophoretic mass flux, ¢ is the time, x is
the axial coordinate, w is the electrophoretic
mobility, E is the electric field strength, o is the
electric conductivity of the solution, g, is the
electric conductivity of the pure buffer, a is the
concentration coefficient of the electric conduc-
tivity of the solution and j is the density of the
electric current.

The dependence of the electric conductivity on
the analyte concentration given by Eq. 3 is valid
only for dilute solutions.

Excluding electric field strength from Eqgs. 1-
3, one finds

dc 9 ( nEqc )

o=0,(l+ac),

—-— + =
dr  dx

J
1+ ac =0. E,=7 (4)

gy
The solution for Eq. 4 with initial conditions in
the form of a “‘rectangular pulse™,

. _fen O=sx=x, 5
((x,[)‘,,()— 0, x<0, X, <X )

is well known [10,13]. It is shown in Fig. 1 (1.1
and 1.2) for positive and negative values of the
parameter a.

For a > 0 transformations of the initial profile
are shown in Fig. 1 (1.1). The initial profile (A)
evolves. after the motion starts, into the profile
(B) with a rear discontinuity, having a coordi-



M.S. Bello et al. / J. Chromatogr. A 693 (1995) 113~130 115

1.1 - "pure" electrophoresis P

\
v 2- \ [(j
| !
0- -
0] 9
Xo X’
1.2~ 1.2 - "pure” electrophoresis o< 0
8 C
c [
0 /
B //
/ D
Y
/
(4] Y/
! y,
/ /
/( //
r/ ’/
[
!
{ /
0.0 | L] e )
Y X, X X XX X x x M
] [ Y s s
X
0.2+
1.3 - "pure” chromatography
A B8 C
R ,,,T - - ] ,,,,,,,,,,,,
0
| ,' ’
o } ; /
{ / i
/ 4 ‘
| Co A
/‘ / \ //
00t L L ——
0
XO xl xrxs XI xs xl xs 25

x

Fig. 1. Here and in all subsequent, relevant figures, patterns
A-D represent the concentration profiles taken at different
time moments along the column axis. The dashed vertical
line is located at the point x,(r), called the left edge of the
dispersed boundary, with which the rear discontinuity (verti-
cal solid line) will merge at a certain time moment (here
represented by profile C). In all relevant figures, x represents
the column length. (1.1) Peak evolution in electrophoresis in
the case a >0, a =0.2; (1.2) peak evolution in electro-
phoresis in the case « <0, a = -0.2; (1.3) peak evolution in
non-linear chromatography. &, = 0.3, k, =4.

nate x(¢) at a time moment , a region of the
constant concentration and front disperse bound-
ary. The front disperse boundary is bounded by
a point x,(¢) and a point x_(r) which we shall call

the left edge and the right edge of the disperse
boundary, respectively. The rear discontinuity
moves faster than the left edge of the front
disperse boundary and after a certain time cat-
ches it, eliminating the region of the constant
concentration (C). After this moment the peak
becomes ‘“triangle”-like (D) with a rear discon-
tinuity and a front disperse boundary. In the case
of a <0 [Fig. 1 (1.2)], the initial profile (A) is
subjected to similar transformations (B), (C)
and (D). In both instances the peak evolution is
characterized by the formation of a moving
discontinuity, the coordinate of which is denoted
by x,, a disperse boundary with left edge x, and
right edge x,.

Here a remark on the terminology is appro-
priate. The reader has probably realized that this
paper deals with the phenomena called “non-
linear waves”’, the mathematical theory of which
was developed by Lax [14-16] and for electro-
phoresis [11]. Works on non-linear waves in
chromatography have been recently reviewed by
Helffrich [7] and Helffrich and Carr [8]. It was
pointed out [7,8] that non-linear waves have
been studied in mathematics, fixed-bed engineer-
ing and chromatography (we now add electro-
phoresis to this list) and it led to different
terminologies used in different fields but describ-
ing the same phenomena. The most precise
terminology has been developed in mathematics,
but for chemists it might be rather unusual. We
tried to find a compromise in this paper between
rigorousness of definitions and intuition. The
terminology used to describe the patterns shown
in Fig. 1 (1.1 and 1.2) will be used in subsequent
figures, where applicable. Therefore, we reserve
the word discontinuity for what is also called
“shock™ or “‘abrupt transition” and denote its
coordinate by x,, X, or x,. A region in space
where the concentration monotonously increases
or decreases is called a disperse boundary. It is
bounded by its left edge x, and the right edge x ..
A region where the substance concentration is
not zero will be called a peak or zone. The
region of the peak where the concentration
increases along the space coordinate, even dis-
continuously, will be called the peak rear and
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that where it decreases will be called the peak
front (see [8]).

2.2. Non-linear chromatography
Non-linear, non-equilibrium chromatography

of a single analyte is governed by the following
set of equations [17,18]:

e b oq

ot Tox T D0 L=V (6)
dq

or = KaS—q)c —kyq (7)

where c is the concentration of the analyte in the
liquid phase, i_ is the chromatographic mass flux,
q is the analyte concentration in the immobile
phase, V is the velocity of the liquid, k, and &,
are coefficients of the adsorption and desorption,
respectively, and § is the concentration of the
binding sites in the immobile phase (we assume
the porosity of the medium to be included in the
coefficients &k, and k).

In the case of equilibrium chromatography,
the concentration g in the immobile phase may
be expressed through c¢. By neglecting fast pro-
cesses in the establishment of the phase equilib-
rium, one can simplify Egs. 6 and 7 to

dc (Ve 6( k,Sc ")_ k, Sc

ot T Tax T ar k.c+k, q:kac+kd
(8)

The second expression for ¢ in Eqgs. 8 is known
as the Langmuir isotherm.

The evolution of the “rectangular-pulse” ini-
tial profile predicted by Egs. 8 is shown in Fig. 1
(1.3). The non-linear chromatographic peak evo-
lution resembles that of zone electrophoresis
when a <0 but the curvature of the rear disperse
boundary is different.

In order to model mass transport in capillary
zonal electrophoresis (CZE), we suggest com-
bining the equation for the electrophoretic peak
evolution (Eq. 4) with those of non-linear chro-
matography (Eqgs. 8). These combined equations
govern both the specific electrophoretic inter-
action of the sample with the buffer and mass
exchange with the capillary wall, i.e., the im-

mobile phase. These equations are also valid for
electrokinetic chromatography [19,20].

3. Equations for zone electrophoresis in thin
capillaries

The following combined equation is suggested
for the modeling of the electrophoretic transport
in thin capillaries where mass exchange with the
capillary wall becomes significant:

d k,Sc d [.LCEO)_
§<C+kac+kd)+a<w+l+ac =0 ©)

where ¢ is the analyte concentration in the
buffer, k, and k, are the adsorption and desorp-
tion constants, respectively, wu is the electro-
phoretic mobility, E, is the electric field strength
which would exist in the capillary in the absence
of the sample and a is the concentration coeffi-
cient of the electric conductivity.

The term Ve in Eq. 9 describes, in particular,
electroosmotic transport in the capillary. In this
case the velocity V should be related to the
electric field strength:

V=, E. (10)

where u, is the effective electroosmotic mobility
and E_; is the effective electric field strength,
proportional to the intensity of the external
electric field. The effective electroosmotic
mobility and the electric field strength may
depend on the concentration of the analyte in
the mobile and immobile phases, buffer pH, etc.
As a rough approximation, they could be set at
u,, =constant and E .= E,. In this paper we
neglect effects of the electroosmotic transport
and forced fluid flow, assuming

V=0 (11)
In order to transform Eq. 9 in a convenient

form, the following dimensionless variables and
characteristic values are introduced:

x=x'Ly, t=t'7«, €c=C'Cx,

k=eg gy 12
]—"kd' ) z—kd'c*v ( )
Ly

,
a’' =acCy, Tsx=
mE,
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where L., 74, ¢4 are the characteristic values
(scales) of the length, time and concentration,
respectively. Dimensionless variables and param-
eters in Eq. 12 are those primed. However, in
order to make the following treatment more
readable, we omit primes and assume all vari-
ables to be dimensionless.

A possible choice of the scales in Eq. 12 is the
length of the capillary or the width of the initial
peak x, as the length scale L. and the buffer
concentration as the concentration scale cx.

Eq. 9 may be rewritten in the following form:
oy 0
ET; + E =0 ( 13)

B B k.c .«
lll_'w(c)—c-'—lwtkzc‘ b =8() =T 4c

(14)

where ¢ is the dimensionless density of the mass
flux and ¢ is the sum of the dimensionless
concentrations in the liquid and immobile
phases.

Evidently, Eq. 4 is a particular case of Egs. 13
and 14 describing “pure” electrophoresis when
k, =0 (and k, =0). Egs. 8 for ““pure’” chroma-
tography are another particular case of the same
equations at « =0 (formally, in this case V=1).

Eqs. 13 and 14 and also Eqs. 4 and 8 are not
applicable to discontinuities. Solutions of these
equations represent only disperse boundaries or
regions of constant concentration. However, the
usual approach is to study the evolution of the
initial peak in the form of a “‘rectangular pulse”.
i.e., a discontinuous profile (see Fig. 1). In this
case Eq. 13 should be supplemented with a
condition relating fluxes and concentrations at
both sides of the discontinuity:

D, . A{dlc) = (c,)} = ¢le)) — dlc,) .

dx (t
Tdr = D.., (15)

where ¢, and c, are the concentrations at a close
vicinity to the left and right sides of the dis-
continuity, respectively; D, . denotes the ve-
locity of the discontinuity motion along the
capillary and x(¢) is the axial coordinate of the
discontinuity. We shall also use another notation

for the velocity of the discontinuity: D{c,, c.}
explicitly showing its functional dependence on ¢,
and ¢, (see [14-16]).

An explanation to Eq. 15 is the following.
Assume that at the left side of the discontinuity
the analyte concentration in the mobile and
immobile phases is ¢ = (c,) and the flux density
is = ¢(c,). At the right side of the discontinui-
ty ¢ = ¢(c,) and ¢ = ¢(c,). The mass flux due to
the motion of the discontinuity is equal to
D, . A{w(c,) = ¥(c))}. According to the law of
mass conservation it should be balanced by the
difference of the fluxes ¢(c,) — ¢(c,) as it is
expressed by Eq. 15.

Egs. 13 and 14 are subjected to the following
physical constraints: concentration ¢ is positive
or zero, coefficients k, and k, are positive or
zero (see Egs. 16) and electric conductivity is
positive (see Eq. 17):

cx,)=0, k, =0, k,=0 (16)
14+ ac(x,t)>0 (17

The concentration coefficient of conductivity a
is supposed to have both signs and, in particular,
to be zero.

The initial conditions for Eqs. 13-17 are Eq.
S.

The set of equations Egs. 13-17 and 5 repre-
sents the simplest non-linear mathematical
model taking into account effects of the elec-
trodispersion and interaction with the capillary
wall (or the sorbent, in electrokinetic chromatog-
raphy). Solutions to this kind of equations are
known to exhibit “‘non-uniqueness”, i.e., they
can give several values of concentration for one
space point. In order to have a physically mean-
ingful solution, additional conditions, further
specified. should be added to Eqgs. 13-17 and 5.

4. Dependence of velocity on concentration

The concentration dependence of the concen-
tration velocity is of decisive importance for a
peak profile. This section studies possible depen-
dences of the concentration velocity on con-
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centration and relates them to the shape of the
peak.
Eqn. 13 may be represented in the form

dy dc d¢ ac

dc ot e ax 70

which transforms to the well known transport
equations for concentration ¢ [8,11,14-16]:

dc

dc
ot )

+ v(c) x =0 (18)
where v(c) is the concentration velocity. By
comparing Eq. 18 with the previous one, we
derive

¢'(c)
¢'(c)

Taking into account Eq. 14 one obtains an
explicit expression for v(c):

v(c) = (19)

1 (1+ k,c)
(1+ac)® k,+(1+k,c)

v(c) (20)

Analysing the dependence of the concentra-
tion velocity v(c) on the parameters &, k, and a,
one can distinguish three cases: (i) the velocity is
non-monotonous (Fig. 2A-i); (ii) the velocity
increases with increasing concentration (Fig. 2A-
ii); (iii) the velocity decreases with an increase in
concentration (Fig. 2A-iii). The following rela-
tionships determine the three cases:

(i) kk,—a)>a, a>0 (21)
(i) a<0, (1+ac)>0 (22)
(i) kky—a)<a, a>0 (23)

The maximum velocity v, and the concen-
tration ¢ corresponding to it in Fig. 2A-i are
given by

e[ )

Up = Max v(c) =v(c,,) (24)

Let us consider the evolution of the initial
peak rear. The initial distribution of the con-
centration is given by Eq. 5. At the initial
moment the analyte concentration ¢ at x =0 lies
within the range 0sc=<c,.

When the electric field is applied, each point
on the analyte moves with the velocity given by
Eq. 20 (Figs. 2A-i, 2A-ii and 2A-iii) and in the
time moment close to t = +0, transforms to the
shapes shown in Figs. 2B-i, 2B-ii and 2B-iii. The
arrows in Figs. 2B indicate the velocities of the
points having different concentrations. The
graphs in Figs. 2B were obtained from those in
Figs. 2A by a reflection relative to the bisector of
the coordinate angle. Figs. 2B illustrate that for
a peak rear the points of the initial concentration
profile move according to

x =v(c)t or,in another form,
ve)=z. z== (25)

For a peak front the points of the initial con-
centration profile move according to

x=x,+tuv(c)t or,in another form,
v(c) =z, z=x—t£g (26)
where z is the variable proportional to the
coordinate x at any time moment ¢.

Eq. 25 determines in an implicit fashion a
dependence of the analyte concentration on x
and r.

Unfortunately, an explicit equation for ¢(z) is
difficult to obtain. However, for a qualitative
analysis, the explicit equation is not necessary.
In fact, the function c¢(z) is already shown in
Figs. 2B.

Not all of the peaks shown in Figs. 2B may
exist. Thus, at a time moment ¢, there are three
different values of concentration corresponding
to one space point x, = z,¢, in Fig. 2B-i and two
different concentration values in Fig. 2B-iii (see
the vertical dashed lines). This situation, obvi-
ously. cannot exist. Only in Fig. 2B-ii does the
transformed profile have the necessary property
of uniqueness and, thus, is compatible with real
experimental conditions. In order to avoid non-
uniqueness of the profiles shown in Figs. 2B-i
and 2B-iii, a discontinuous profile should be
realized. Its motion is determined by Eq. 15.
Additionally, only one of the two branches of
the profile in Fig. 2B-i can exist. A solution to
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Fig. 2. Dependence of the concentration velocity on the concentration (A) and a transformation of the edges of the initial
“rectangular pulse” (B). (A-i. B-i) Non-monotonous dependence of the concentration velocity on the concentration. k,(k, — a) >
a, a=02>0, k, =0.3, k, =4, ¢, =1.2. (A-ii, B-ii) Monotonously increasing dependence of the concentration velocity on the
concentration. 1+ ac>0, a=-0.2<0, k,=0.3, k,=4. ¢,=1.8. (A-iii, B-iii) Monotonously decreasing dependence of the
concentration velocity on the concentration. k,(k, —a)<a, a =0.2>0, k, =0.05, k, =4, ¢,=1.2.

Eq. 25 or 26 for case (i), corresponding to Fig.

2B-i, can be represented in the following form:
_feal(z), forO=c=c,, z=vlc)

c@) = {cz(z), forc, <c<c, z=uv(c,) (27)

where ¢,(z) and c,(z) are two branches of the
inverse function ¢ =v '(z).

The requirement of the uniqueness of the
concentration at any space point makes impos-
sible the existence of disperse boundaries in Fig.

2B-ii and for 0sc=c, (Fig. 2B-i) at the peak
front. Analogously, the existence of the disperse
boundary in Fig. 2B-iii and for ¢, <c=<¢; 2B-i
at the peak rear is impossible.

Fig. 3 illustrates an evolution of the whole
initial peak in case (i), Eq. 21, when the con-
centration velocity is non-monotonous. Lines (a,
b) and (c, d) show the lines of discontinuities in
the profile. Evidently, the upper branch of the
profile should be rejected at the rear and the
lower branch should be rejected at the front of
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Fig. 3. Scheme of the “rectangular pulse’ transformation
when the concentration velocity is not monotonous. ¢, is the
concentration corresponding to the maximum velocity; a, b
and c, d are the lines of discontinuities imposed to obtain
uniqueness of the concentration. Dashed curves indicate
non-existent solutions.

the peak (dashed lines). These two dashed lines
would again violate the principle of concentra-
tion uniqueness at some given space points and,
thus, have to be rejected. Locations of the
discontinuities are regulated by Eq. 15.

It may occur that a discontinuity is not stable,
i.e. it also cannot exist. Thus, consider a dis-
continuity at the peak front, line (c, d) in Fig. 3.
The concentration at the left side of the dis-
continuity is ¢, and at the right side ¢, =0. As
¥(0) =0 and ¢(0) =0 (see Eq. 14), the velocity
of the discontinuity found according to Eq. 15 is

_é(c) _ 1+ kyc
0 gle)  (1+k, +kc)(1+ac)

(28)

Fig. 4 shows the dependence of the discon-
tinuity velocity D_, on the concentration c¢. The
concentration velocity v(c) is shown by a dashed
line. The two curves have an intersection point
at concentration cx, 1.€..

0.9

0.6

0.0 m

Fig. 4. Dependence of the concentration velocity v(c) (solid
curve) and the velocity of the discontinuity D{c, 0} (dashed
curve) on concentration. a =0.2, k, =0.3, k, = 4.

vcs) = D,. o= D{cs,0)

1 )2
ca =1+ ke, 2 = 1)

T e TR (29)
It is seen from Fig. 4 that
vic)=D,.,, O0=sc=c, (30)
v(c)<D.,, cs+sSCSsg, (31)

When the concentration velocity is less than
the velocity of the discontinuity, Eq. 31, the
discontinuity cannot exist, as the concentration
at the left side of the discontinuity lags behind it
and thus destroys the discontinuity. In contrast,
in the case given by Eq. 30, the concentration at
the left side of the discontinuity moves faster
than the discontinuity. This leads to non-unique-
ness of the concentration profile and, thus, to the
necessity for the discontinuity.

In particular, for ¢,=c4, the discontinuous
profile of the left edge shown in Fig. 3 exists only
if ¢, =ZcCe.
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A general condition of the discontinuity
stability is given by

v(c)=D, . =vlc) (32)

A concentration profile giving a solution to the
problem in Eqgs. 13-17 is found by combining
solutions of Eq. 27 and introducing discon-
tinuities where the solutions of Eq. 27 are not
unique. The discontinuities should satisfy Egs.
15 and 32. All stages of the peak evolution for
the cases (i)-(iit) (as illustrated in Figs. 2) are
described in the following section.

5. Peak evolution

This section deals with evolutions of the initial
profile for the three types of the velocity depen-
dence on the concentration (Egs. 21-23).

The most interesting case, generating a variety
of peak shapes, is when the dependence of the
velocity on concentration has a maximum. A
condition for the existence of the maximum is

given by Eq. 21.

5.1. Case (i). Peak evolution with non-
monotonous velocity; k (k, —a)>a, a >0

The concentration c,, corresponding to the
maximum of the concentration velocity, and the
concentration c., corresponding to the equality
of the concentration velocity to the velocity of
the discontinuity, divide the whole range of the
initial concentration c, into three intervals (see
Fig. 4):

(A) Co < Cpys
centration;

(B) c,, <c,<c,, the interval of intermediate

initial concentration;
(C) c«<c,, the interval of high initial con-

centration.

The behaviour of the concentration profile
depends on the interval to which the initial
concentration belongs. It is analysed successively
below for all three intervals.

the interval of low initial con-

121

(A) Interval of low initial concentration, cy<c.,
(see Fig. 4)

Under the condition in which the initial con-
centration is less than the concentration c
corresponding to the maximum of v(c), only the
first branch of the function ¢ = c¢,(z) exists, Eq.
27. Successive stages of the initial profile evolu-
tion are shown in Figs. 5 and 6. Fig. 5 presents
patterns at different time moments as they move
along the capillary axis in the same length scale.
The structure of the peaks is shown on a larger
scale in Fig. 6. At the time moment ¢ = +0 the
initial profile (Fig. 6A) transforms into the peak
shown in Fig. 6B. The left edge of the rear
disperse boundary x, moves along the x-axis with

constant velocity v(0):

x,(1) = v(0)t (33)

The concentration in the rear disperse bound-
ary between x, and x, is given by the function
¢,(2), Eq. 27. The right edge of the rear disperse
boundary x (¢) also moves with constant velocity

v(c,):

x.(f) = v(cy)t (34)
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/ { /
0) ,/ // i
0.0 L L | —
0x, 10 20 30 40

Fig. 5. Peak evolution for non-monotonous velocity and low
initial concentration ¢, <c. (A), (B), (C) and (D) are the
peak shapes at dimensionless time moments t =0, 24.5, 36.45
and 38.3, respectively. Parameters: & =0.2, k, = 0.3, k, =4,
¢, =0.15. Values of ¢, =0.1966 and c,=0.3470. v(0)=
0.7692, v(c,) =0.8437, D, , = 0.8176.
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Fig. 6. Structure of the peaks shown in Fig. 5. Peaks A and B are plotted in the same scale (on the x-axis), which is, however,
different from the scale used for peaks C and D. (A) Initial *‘rectangular pulse” distribution at =0, x, = 1. (B) A peak with a
developed disperse rear boundary. a region of constant initial concentration and a sharp discontinuity at the front. (C) A peak at
the time moment r =7, = 38.3 when the disperse boundary reaches the front. The concentration of the peak maximum is still the
initial concentration. (D) A “triangle-like peak at r = 47.4. Note that, in this last instance, the peak maximum has decreased.

As the velocity corresponding to the initial
concentration ¢, is higher than the velocity
corresponding to the zero concentration v(c,) >
v(0), the width of the rear disperse boundary
x, —x,={v(c,) —v(0)}s increases linearly with
time. The peak front is a sharp discontinuity
which moves along the x-axis with constant
velocity D, ,:

x () =x,+ D, (35)

It is seen from Fig. 4 that the stability con-
dition of the discontinuity, Eq. 32, is satisfied,
ie., v(cy)> D, o>v(0). It follows from this
inequality that the edge x,(¢) will catch up the
front discontinuity x (¢) at the time moment r,
(Fig. 6C):

Xy

N v(c,) — D

('(),(l

x () =x.(¢) . L (36)

Further development of the peak is deter-
mined by the velocity of the discontinuous front,
Eq. 28, which is not algebraic in this case, but an
ordinary differential equation:

dx (¢

B0 pie,,0)
1+ kye (x,/1)

Tk + ke, (X, /D[N + acy (%, /0)]

(37)
with the initial condition

B =x ) =x () = )
A== ) T ) =D,
where x(f) is a new function describing a posi-
tion of the peak front after the time ¢, given by
Eq. 36.
A general case, like the Gauche problem in
Egs. 37 and 38, can be solved only by computer
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methods. However, the peak behaviour in the
final stage can be easily analysed in an asymp-
totic form.

The final stage of the peak evolution is shown
in Fig. 6D. A “triangle”-like peak moves along
the x-axis, keeping its shape. The concentration
in the peak maximum decreases with time.

Asymptotic solution. Let us assume that after a
relatively long time the concentration becomes
small and later verify that. In this case it is easy
to find an asymptotic solution to the problem in
Eqs. 37 and 38. By expanding functions ¢(c),
v(c) and D, (Eqs. 14, 20 and 28) in power
series of ¢, and neglecting terms proportional to
powers of ¢ higher than two, one derives

Plo)=(1+k)c, vie)=v(0)+v(0),
1
Do ~v(0) +5 vl(0)c
Then, it follows from Eq. 25 that

z —v(0) :it)

¢ (z) = o0y i x()<x<x/(1)

(39)
Eq. 37 simplifies to
dx (t) 1[x[(
—dz( ) ~5 [x t( ) + v(O)] (40)

A solution to Eq. 40 is given by
x,(t) =v(0)t + bV (1) (41)

where b is the integration constant.

Constant b cannot be found from the initial
condition, Eq. 38, as this equation does not
assume small concentration values. For this
purpose, the mass concentration law is applied.
As i is the mass concentration in the mobile and
immobile phases, the mass conservation law
implies that

X (1)
[ steinnay = m,.

m, = x,¥(c,)
x (1)

where m,, is the mass of the substance introduced
in the column. By evaluating the integral with

the approximated expression for ¢(c), the fol-
lowing expression is found:

1+k,
o= 207(0)

2

and, finally, the constant b is found as

p =[O @)

The concentration at the point of discontinui-
ty, which is the maximum concentration of the
peak in this instance, is given by

b
¢, = ¢ [F, 0] =———= (43)
1 v'(0)V()
where c, is the concentration at the discontinuity
point.
The width of the peak Ax is given by

Ax(t) = £,(t) — x,(t) = V(1) (44)

Therefore, the peak width increases with time
proportionally to the square root of time. This is
the same law that governs the peak width of a
Gaussian peak, but the mechanism of the
broadening and the peak shape are different. In
contrast to a Gaussian peak, the peak we analyse
here is asymmetric and its concentration grows
linearly from zero at x =x,, Eq. 33, to c, at the
point x = x, given by Eqs. 41 and 43. The value
of the function ¢ at the discontinuity point is
Y(c,) and the total mass of the substance in the
column may be found as the area of the triangle

1
m, =“2‘Ax ¥lc,) (45)

Of course, Ax and ¢, as given by Eqgs. 43 and
44, satisfy Eq. 45. The latter can be used as a
simple way to determine the constant b.

Concluding the analysis of the peak evolution
in the case of low initial concentration, the
following scenario can be presented. At the
initial stage of the peak evolution the left and
right edges of the rear disperse boundary and the
front discontinuity move with constant but differ-
ent velocities (Fig. 6B). The velocity of the
discontinuity is less than the velocity of the right
edge of the rear disperse boundary (see Fig. 4).



124 M.S. Bello et al. | J. Chromatogr. A 693 (1995) 113-130

After the time moment ¢=1¢,, when the peak
transformation occurs, i.e., when the disperse
boundary reaches the front discontinuity (Fig.
6C), the velocity of the front decreases ap-
proaching the velocity of the left edge of the rear
disperse boundary (Fig. 6D).

(B) Interval of intermediate initial
concentration, ¢, <c,<cx (see Fig. 4)

A specific feature of this interval of the initial
concentration is that both branches c,(z) and
¢,(z) could exist (see Fig. 3 and Eq. 27). How-
ever, the branch c,(z), as was discussed above
(Egs. 30-32), exists only for initial concentra-
tions higher than c..

The peak rear for the case in which the initial
concentration c, is higher than the concentration
¢, cannot be represented by a disperse boundary
given by ¢ (z) and continuously matching the
region of the constant initial concentration, as
we have seen in the previous subcase of low
initial concentration [the branch c,(z) exists only
for ¢ <c_, Eq. 27]. However, it is possible to
combine a solution ¢,(z) with a discontinuity
(Fig. 3). The front of the peak can be repre-
sented as a discontinuity, since ¢, <c4, and.
therefore, the concentration velocity is higher
than the velocity of the discontinuity (Fig. 4).
The latter is required by Eq. 32.

Successive stages of the peak evolution are
shown in Figs. 7 and 8. Fig. 7 presents all
patterns in the same scale, whereas in Fig. 8 they
are shown on an enlarged scale in order to
describe their peculiarities. The initial rectan-
gular profile (Figs. 7A and 8A) transforms at the
time moment r= +0 into the peaks shown in
Figs. 7B and 8B. The edges x,(f) and x (t) move
along the x-axis with the constant velocities v(0)
and D, ,, respectively:

x,(t) =v(0)¢ (46)
x(1)=x, + D, ot (47)

It is slightly more complex to determine the
velocity and law of motion of the right edge of
the rear disperse boundary. In order to find this
velocity, Eq. 37 should be used. It has the
following form in the present case:

Fig. 7. Peak evolution for non-monotonous velocity and
intermediate initial concentration ¢, <c,<c«. (A), (B), (C)
and (D) are the peak shapes at dimensionless time moments
1=0, 32.62, 72.41 and 90.6, respectively. Parameters: «, k,
and k, as in Figs. 5 and 6. ¢, = 0.3. Values of ¢_, ¢« and v(0)
as in Figs. 5 and 6. u =0.844, D_ ,=0.83, ¢,(p) = 0.152,

d(;' =D{c,(x,/1),¢,} (48)

with the initial condition
x.(0)=0 (49)

The value of x (¢)/¢ is indeterminate at t =0. By
using the L’Hospital rule for revealing indeter-
minacy, one finds

x, _dr (O] _ _
T - dr =0 - vr(O) =M

lim
1—0
where u, denotes the velocity of the right edge
v,(0), still unknown at the initial time moment
t=0.

Eq. 48 at time t=0 may be represented as
follows:

w = D{c, (1), ¢} (50)

Eq. 50 allows one to determine the velocity
i, We can easily solve it by noting that the
velocity u, is at the same time the concentration
velocity, corresponding to a certain concentra-
tion Cupr and the velocity of the discontinuity,
having ‘a concentration ¢, at the left and a
concentration c, at the right. In order to find an
approximate value of ¢, , one plots two func-

tions, y = D{c, ¢,} and )1)=v(c), and finds the
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Fig. 8. Structure of the peaks shown in Fig. 7. Peaks A and B are plotted on the same scale (on the x-axis), which is, however,
different from the scale used for peaks C and D. (A) Initial ‘‘rectangular pulse” distribution at t =0, x, = 1. (B) A peak with a
developed disperse rear boundary. right discontinuity, a region of constant initial concentration and a front discontinuity,
1=32.62. (C) A peak at the time moment ¢ =7, = 72.41 when the disperse boundary reaches the front. The concentration of the
peak maximum is still the initial concentration. (D) A “triangle”-like peak at 7 =90.6.

point of their intersection having coordinates
(c.,. m) (Fig. 9).

The solution to Eq. 48 is found in the follow-
ing simple form:

DEC,CO;

v(e),

0.7 +— T

0.0 ¢y 0.5

c
Fig. 9. Dependences of the concentration velocity and the
velocity of the discontinuity D, . on concentration for & =
02, k, =03, k,=4 and ¢, =0.4.

x,(1) = (51)

In order to verify this, it is sufficient to note
that substituting x,(t) from Eq. 51 into Eq. 48
transforms the latter into an equation like Eq. 50
and the initial condition, Eq. 49, is also satisfied.
It follows from Eq. 51 that the right edge of the
disperse boundary x, moves along the x-axis with
a constant velocity u,. Concentration c¢,(,),
corresponding to the concentration at the right
edge of the rear disperse boundary, is the peak
tail height. It is worth noting that this con-
centration is a constant until the time moment ¢,
when the rear discontinuity reaches the front
discontinuity.

At the time moment f,, determined from the
condition x (f;) =x(t;), the right edge of the
disperse boundary reaches the sharp front x ()
(Figs. 7C and 8C). After this moment the peak
shape becomes ‘‘triangle”-like (Figs. 7D and
8D), and the peak evolves analogously to the
case considered above (Egs. 41 and 43).

Summarizing the analysis presented above, the
following scenario of the peak evolution in the
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case of an intermediate initial concentration
might be suggested. Similarly to the previous
case of low initial concentration, the rear dis-
perse boundary, the width of which grows linear-
ly with time, and the discontinuity at the front
are formed. However, another discontinuity at
the right edge of the rear disperse boundary
distinguishes this case from the previous one
(compare Figs. 6B and 8B). A very interesting
characteristic of the peak evolution shown in
Figs. 7 and 8 is that the peak height falls abruptly
from ¢, to ¢, at t=1,. It is also worth noting
that the time moment ¢, when the rear disperse
boundary reaches the front and the location of
this event at the x-axis are almost twice as long
in comparison with the case of low concentra-
tion. This means that one observes either a
triangle or a peak having a rectangular region
depending on the initial concentration of the
analyte.

(C) Interval of high initial concentration, ¢, <
cx <c, (see Fig. 4)

The initial peak transformations are shown in
Figs. 10 and 11. The development of the rear
disperse boundary combined with the discon-
tinuity is essentially the same as in the previous
case. However, the front region of the peak
cannot be represented as a pure discontinuity as

A ¢, B (o D
044 — — 9 — — — - — 7T — — — — — — — — _ _ _ .
¢ E
0.3
B .
0.2 Cm o ] S FHE
Cu _ o 3
0.1 J ! T
| / /
/ / !
0.0 4 ji, 4 - i o
20 40 80 8C 100

Fig. 10. Peak evolution for the non-monotonous velocity and
high initial concentration ¢ <c.<c¢,. (A). (B), (C), (D),
(E) and (F) are the peak shapes at dimensionless time
moments ¢ =0, 20.1, 55.3, 74.5, 111.5 and 131.5, respective-
ly. Parameters a, k, and &, and the values of ¢ . c4x and v(0)
as in Figs. 5-8. ¢,=0.4. p, =0.839. ¢ (u,)=0.12, pu,=
0.831. ¢, (u,) = cs.

the stability condition for the discontinuity is not
satisfied there (the velocity of the discontinuity is
higher than the concentration velocity at the left
from the discontinuity, see Fig. 4, ¢>c4).
Therefore, the concentration profile at the front
boundary of the peak should be a combination of
the profile ¢,(z) and a discontinuity, in analogy
with that found in the previous case for the rear
disperse boundary.

The right and left edges of the rear disperse
boundary move along the x-axis with constant
velocities:

x () =v(0),  x. (1) =t (52)

where u, is the velocity found from Eq. 50.
The motion of the left edge of the front
disperse boundary is governed by

x,(8) = v(c)t + x, (53)

where x,(7) is the coordinate of the left edge of
the front disperse boundary.

The equations for the right edge of the front
disperse boundary will then be similar to Eqs. 48
and 49:

dx, X, —x
dr ZD{CZ< I 0)’0} (54)

%.(0)=x, (55)

Again, as in the previous case of intermediate
initial concentration,

lim X, X _ d(x, (1) — x,)
(—0 t dr

=M (56)
t=0
where u, is the velocity of the right edge of the
front disperse boundary. This velocity can be
found from the following equation, which is
similar to Eq. 50:

= D{c,(p,), 0} (57)

Then, for the right edge of the front disperse
boundary, we find

X(6) = pyt +x, (58)

It is important to note that, since u, satisfies
Eq. 57 and at the same time is the concentration
velocity, the velocity u, is the velocity v(cs)
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Fig. 11. Structure of the peaks shown in Fig. 10. Peaks A-C are plotted on the same scale (on the x-axis), which is, however,

different from the scale used for peaks D-F. (A) Initial “‘rectangular pulse” distribution at =0, x,=1. (B) A peak with a
disperse rear boundary, right discontinuity, a region of constant initial concentration, a front disperse boundary and a front
discontinuity, r =20.1. (C) A peak at the time moment 7 =, = 55.3 when the rear disperse boundary reaches the front disperse
boundary. (D) A peak with a rear disperse boundary, a discontinuity, a front disperse boundary and a front discontinuity. The
concentration at the peak maximum decreasing as the peak moves along the capillary, r=74.5. (E) The second peak
transformation: the right edge of the rear disperse boundary reaches the right edge of the front disperse boundary, t = ¢, = 111.5.

(F) The final stage of the peak evolution, 7 = 131.5.

corresponding to the intercept of the concen-
tration velocity and the discontinuity velocity
curves. Therefore, the concentration corre-
sponding to the amplitude of the front discon-
tinuity is ¢, = c., given by Eq. 29 and illustrated
in Fig. 4.

At a time ¢, the right edge of the rear disperse
boundary x, reaches the left edge of the front
disperse boundary x, (Figs. 10C and 11C). The
time ¢, is found from the following equation:

Xg

f=——
oy —uley)

(59)

The motion of the new right edge of the rear
disperse boundary is found from the following
equation:

dx, X, X, —x
dr :D“|~"zED{C1(—l‘_>’C2< t U>} (60)

with the initial condition

HiXy

f501)=:;;:tqug;j (61)

The problem in Egs. 60 and 61 can be solved
numerically.

The next transformation of the peak occurs
when the boundary x, reaches the right edge of
the front disperse boundary x, (Figs. 10C and
11C). The time moment ¢, when this event
occurs is calculated from

x (1) = x,(1,) (62)
After that the peak becomes “‘triangle”-like and
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its further evolution is described again by Egs.
41 and 43.

It is interesting that the time 7, of the second
transformation after which the peak becomes
“triangle”’-like is longer than in previous cases of
lower initial concentration. This makes it pos-
sible to observe experimentally all stages of the
peak evolution. The analysis presented above
fully settles the case of the non-monotonous
dependence of the concentration velocity on
concentration. This type of velocity dependence
on concentration reflects the fact that the elec-
tromigration and chromatographic mechanisms
of the peak dispersion are comparable and act in
opposite directions. We have seen in Fig. 1 (1.1)
that electromigration in the case of @ >0, corre-
sponding to a decreasing dependence of the
concentration velocity on concentration, leads to
the development of a peak with a front disperse
boundary. Chromatography, characterized by an
increasing concentration dependence of the con-
centration velocity, in contrast, produces peaks
with a rear disperse boundary. Combination of
both, as shown above, is able to delay peak
transformation significantly and thus preserve a
narrow peak of the analyte.

We proceed to the following two cases of the
concentration velocity monotonously increasing
with concentration [case (ii), Eq. 22] and of the
concentration velocity monotonously decreasing
with concentration [case (iii), Eq. 23]. The
analysis of the peak transformations is similar to
that presented above, although there are quali-
tative differences in the peak behaviour.

5.2. Case (ii) Peak evolution with monoton-
ously increasing velocity a <0, (1 + ac)>0

The initial concentration cannot be arbitrary
high, otherwise the electric conductivity will
become negative for high values of concentra-
tion. It is assumed below that the concentration
is limited by the inequality ¢ < —1/a. The evolu-
tion of a concentration profile is shown in Fig. 12
(12.1).

The initial pulse (A) transforms into the peak
(B) with a disperse rear boundary and a front
discontinuity. The disperse boundary reaches the
discontinuity (C) and the peak becomes ‘‘tri-

angle”-like (D). The motion of the edges x,, x,
and boundaries x_, x_ is given by Eqgs. 33-37.
The asymptotic Eqs. 39-45 are also valid. A
qualitative difference of the peaks shown in Fig.
12 (12.1) from those shown in Figs. 1 (1.1) and 5
is in the shape of the disperse boundary. In
contrast to the peaks in Figs. 1 (1.1) and 5, the
concentration profiles B, C, D in Fig. 12 (12.1)
have an inflection point. In practice, a concen-
tration profile with an inflection point might be

misinterpreted as a diffusional boundary.

5.3. Case (iii). Peak evolution with
monotonously decreasing velocity a >0, k,(k, —
a)<a

The peak evolution for this case is illustrated
in Fig. 12 (12.2). It passes the following stages.
The initial ‘“‘rectangular pulse” (A) keeps a
discontinuity at the rear and develops a disperse
boundary at the front (B). The coordinates of
the discontinuity and the edges of the disperse
boundary are given by

x,()=D, o, x () =vlco)t +xq,
x.(0)=v(0) +x, (63)

At the time moment ¢,

Xo

D, - v(cy) (64)

t, =
the discontinuity reaches the left edge of the
disperse boundary (C) and after that the am-
plitude of the peak decreases and generates
again the “triangle”-like shape (D). The coordi-
nates of the discontinuity and the maximum
concentration are found from a numerical solu-
tion of the equation

o (%)

with the initial condition

0.cy

X () =x,- D (66)

g0 v(cy)

The asymptotic solution for the peak is also
found analogously to Eqs. 39-45. However, the
sign of the constant b in Eq. 43 is negative:



M.S. Bello et al. | J. Chromatogr. A 693 (1995) 113-130 129

S| A 121 B C

10—~ —— -~ - - L 7 - e
// /

08 4 ,'/ // D

/

/ /
02 / / / '
00 ! | ( [ I
2 4 6 8
X
0 X
M
12.2
G A B C
P} SR, e
| —\ (\ _____
o 2 \ D
\ ;
\ N
\ EoN
\ L
' N ‘ \\\
‘:\ o
\ S
. ‘ N
H \\\
’ 1 - I >
a X 2 4 6 8 10
0
X
Fig. 12. (12.1) Peak evolution in the case of monotonously increasing concentration velocity. a = —0.2, k, =0.3, k, =4, ¢, = 1.

v(0) =0.7692, v(c,) = 1.544, D, . =1.179. (A) Initial distribution 1 =0, x, = 1. (B) A peak with a disperse rear boundary, a
region of constant initial concentration and a discontinuity at the front. (C) The moment of the peak transformation into a
“triangle™, 7, = 2.74. (D) The final stage of the peak evolution. (12.2) Peak evolution in the case of monotonously decreasing
concentration velocity. a =0.2. k, =0.05, k, =4, ¢, = 3. v(0) =0.952, v(c,) =0.391, D, =0.6223. (A) Initial distribution, ¢ = 0,
x,= 1. (B) A peak with a discontinuity at the rear, a region of constant initial concentration and disperse front. (C) The moment
of the peak transformation into a “triangle™, 1, = 4.3. (D) The final stage of the peak evolution.

trophoresis a > 0) function of the concentration.
This leads to relatively simple and fast trans-
formations of the initial ‘“‘rectangular pulse” to a
“triangle-like peak. Combination of electropho-
resis and non-linear adsorption can lead to a
non-monotonous dependence of the concentra-

_ 2p(cy)v'(0)x,
b= —\/—- —I“T (67)

6. Conclusions

In chromatography and electrophoresis, the
concentration velocity is a monotonously increas-
ing (non-linear chromatography and electropho-
resis @ <0) or a monotonously decreasing (elec-

tion velocity on concentration and, as a result, to
variety of peak shapes and scenarios of peak
evolution.

The mechanisms of electromigration peak dis-
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persion and non-linear chromatographic peak
broadening are shown to be able partially to
counterbalance each other. This is expressed in
the long time required for transformation of the
initial distribution into a “triangle”-like peak.

One of the most interesting findings, from a
practical point of view, presented in this paper is
that, depending on the initial concentration of an
analyte, one may observe a peak as a “triangle’’-
like peak or as a peak with sharp discontinuities
at its front and/or rear.

Variations of the capillary length, applied
voltage or amount of the injected analyte may
also lead to the appearance of all the kinds of
peaks shown in this paper.
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